UPV Digital RepositoryUPV-DRUniversity of the Philippines Visayas
 

UPV Theses and Dissertations

Permanent URI for this communityhttps://hdl.handle.net/20.500.14583/10

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    The effect of common table salt added in different levels of water salinity as culture medium on growth and survival of prawn larvae Peneus monodon Fabricius
    Abeto, Mario N. (College of Fisheries, University of the Philippines in the Visayas, 1989-09)
    A study was conducted on the effect of common table salt added in waters of different salinity levels used to determine the survival rate, developmental stage, and carapace length of Penaeus monodon larvae from zoea one to post larva one. The following treatments which were adjusted to 33 ppt by adding varying amount of common table salt were: treatment I (8 ppt + 29 g/l) , treatment II (13 ppt + 23 g/l) , treatment III (18 ppt + 17 g/1), treatment IV (23 ppt + 11 g/1), and treatment V (28 ppt + 5/g) . Natural seawater with salinity of 33 ppt was used as control. Certain key ions like Na+, CL-, Ca2+, and Mg2+ were analyzed in each treatment. A sharp drop of. population in all treatments was recorded in the first 5 days of the zoeal stage. Treatment V gave the highest survival rate (25%) , but not significantly higher than treatment IV (20.5%) and control (18%); however, significantly higher than treatment III (10.5%) and treatment II (6.5%) at P<0.05. None of the larvae survived in treatment I after 5 days. Larvae exposed to treatment V had completed post larva one in 11 days (growth index 7). This was not significantly different, however, from those obtained from the control (growth index 6.6) and treatment IV (growth index 6.3). The lowest growth index value which was significantly lower than treatment V was obtained from treatment II and treatment III (growth index 6.0). During the first sampling, carapace length in treatment I reached 0.47 mm, succeeded by the following treatments: III (0.43 mm) , II (0.42 mm) , and V (0.40 mm). Treatment IV and control gave similar results (0.30 mm). After 2 days, rate of increase of CL had shifted from lower to high ionic concentrations culture media. At the end of the study the following carapace lengths were obtained: 1.2 mm for treatment V, 1.15 mm for control, and 1.08 mm for treatment IV. Values obtained from treatment II (0.94 mm) and treatment III (0.98 mm) were significantly lower than treatment V (1.15 mm) . Rearing waters with higher concentrations of K+ and Mg2+ (control, treatments I, and II)showed better growth rate and percent survival than those media with relatively lower concentrations (treatments I, II, and III) . The addition of common table salt to low saline waters, however, did not compensate for the loss of physiologically important ions needed for growth and survival of prawn larvae.
  • Thumbnail Image
    Item
    Effects of different levels of Pinus tebulaeformis pollen on growth and stress resistance of milkfish fry (Chanos chanos)
    Baldove, Analyn B. (University of the Philippines Visayas, 2010-06)
    The present study investigated the effects of different inclusion levels of pine pollen from Pinus tabulaeformis Carr. on the growth performance and stress resistance of milkfish fry (Chanos chanos). Milkfish fry with average body weight of 0.02 g were stocked in 15 tanks (40 fish per tank). A control diet (without pine pollen) and four experimental diets were prepared containing different levels of pine pollen at 0 g kg-1, 1.3 g kg-1, 2.6 g kg-1, 3.8 g kg-1, and 5.1 g kg-1 was fed to the experimental fish for 60 days. At the termination of the experiment, milkfish were subjected to acute ammonia and high salinity shock test. The result of feeding trial revealed that milkfish fed diets containing different levels of pine pollen stowed significantly higher growth (p < 0.05) in terms of weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio than the control diet. Survival of the milkfish during the trial were not significantly different among treatments (p > 0.05). Survival rates of milkfish groups exposed to high salinity stock test for 72 h were not significantly different from each other (p > 0.05). In contrast, results of the ammonia stress test revealed that the survival rates of milkfish fed with the diets containing (2.6 to 5.1 g kg-1) were significantly higher (p <0 .05) than those fed with diets containing 1.3 g kg-1 and the control diet Optimum dietary PP level was estimated using the quadratic model by using SGR and FCR values and found to be is 2.9 g kg-1 and 3.0 g kg-1, respectively. conclusion, pine pollen can be used as a supplement in milkfish diet to enhance growth and stress resistance against environmental stressors like ammonia.
  • Thumbnail Image
    Item
    The effects of different salinity and organic matter levels on the growth of blue-green algae
    Bantillo, Rosario R. (College of Fisheries and Ocean Sciences, University of the Philippines Visayas, 1983-03)
    A one-month culture of lab-lab to determine the growth of blue-green algae in three levels of salinity ( 15 ppt = S1, 30 ppt = S2 and 45 ppt S3) and two levels of organic matter (3.4 to 4.4% = OM1 and 6.5 to 7.8% = OM2) was conducted using a twenty-two plastic containers (diameter = 43 cm; height - 49 cm) at the University of the Philippines in the Visayas Brackishwater Aquaculture Center, Leganes, Iloilo. The study utilized a 3 x 2 factorial experiment in completely randomized design with three replicates. Organic matter levels of the soil affected the chemical properties of soil and water (available phosphorus, reactive phosphorus, ammonia-nitrogen and pH). The higher the organic matter level, the higher the pH and the concentrations of ammonia and phosphorus. On the other hand, salinity did not apparently affect the fluctuations in ammonia, phosphorus and pH due to water replenishment to maintain treatment levels of salinity. Earlier rapid growth of blue-green algae commencing on the 3rd to the 15th day was observed at higher organic matter level. While at lower organic matter level, this occurred only on the 18th to the 28th day. Blue-green algae population (units/ml) was observed highest in treatment IV (S1 OM2; 1,262,113) followed by treatments III (S3OM1 ;761,338); II (S2OM1; 514,788); I (S1OM1 ;494,375); V (S2OM2; 413,750); and, the lowest was obtained from treatment VI (S3OM2; 394,275). The relative percentage proportion of blue-green algae in the lab-lab complex showed that it composed 17.7% in treatment IV, 16.86 % in treatment III, 16.64% in treatment II, 15.82% in treatment I, 15.2% in treatment V and 14.9% in treatment VI. These, however, did not significantly vary among treatments. A low correlation coefficient (r) between the population count and the selected parameters: reactive phosphorus, water pH, soil pH and available phosphorus was obtained while a negative correlation was obtained between the population and ammonia-nitrogen. Significantly higher biomass (ash-free dry weight) of lab-lab was obtained in higher organic matter (OM2) and at 45 ppt salinity (S3). The highest biomass (ash-free dry weight) was obtained in treatment VI (S3OM2; 0.160 g/cm2) while the lowest was obtained in treatment I (S1OM1 0.012 g/cm2). The algal count of lab-lab also showed a significant difference in the organic matter levels but no significant difference on the salinity levels. The highest algal count was obtained in treatment V (S2OM2; 6,773,542 units/ml) and the lowest count was obtained in treatment II (S2OM1; 2,328,792 units/ml). However, the primary productivity based on O2 production showed a significantly higher production in the lower organic matter and at higher salinity level (30 ppt.). The highest O2 concentration was obtained in treatment III (S3OM1 ;5.759 ppm) and the lowest was obtained in treatment V (S2OM2; 4.19 ppm).